Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory

نویسندگان

  • Jerry L. Bona
  • Min Chen
  • Jean-Claude Saut
چکیده

Considered herein are a number of variants of the classical Boussinesq system and their higher-order generalizations. Such equations were first derived by Boussinesq to describe the two-way propagation of small-amplitude, long wavelength, gravity waves on the surface of water in a canal. These systems arise also when modeling the propagation of long-crested waves on large lakes or the ocean and in other contexts. Depending on the modeling of dispersion, the resulting system may or may not have a linearization about the rest state which is well posed. Even when well posed, the linearized system may exhibit a lack of conservation of energy that is at odds with its status as an approximation to the Euler equations. In the present script, we derive a four-parameter family of Boussinesq systems from the two-dimensional Euler equations for free-surface flow and formulate criteria to help decide which of these equations one might choose in a given modeling situation. The analysis of the systems according to these criteria is initiated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory

In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283–318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical setti...

متن کامل

Stabilization of a Boussinesq system of KdV-KdV type

A family of Boussinesq systems has recently been proposed by Bona, Chen, and Saut in [J.L. Bona, M. Chen, J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci. 12 (4) (2002) 283–318] to describe the two-way propagation of small-amplitude gravity waves on the surface of water in a canal....

متن کامل

Higher-order Boussinesq equations for two-way propagation of shallow water waves

Standard perturbation methods are applied to Euler’s equations of motion governing the capillary-gravity shallow water waves to derive a general higher-order Boussinesq equation involving the small-amplitude parameter, α = a/h0, and long-wavelength parameter, β = (h0/l), where a and l are the actual amplitude and wavelength of the surface wave, and h0 is the height of the undisturbed water surf...

متن کامل

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of thes...

متن کامل

Long Wave Expansions for Water Waves over Random Topography

In this paper, we study the motion of the free surface of a body of fluid over a variable bottom, in a long wave asymptotic regime. We assume that the bottom of the fluid region can be described by a stationary random process β(x, ω) whose variations take place on short length scales and which are decorrelated on the length scale of the long waves. This is a question of homogenization theory in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008